Compare learners using the specified loss_metric
Arguments
- sl_output
Output from running
super_learner()
withverbose_output = TRUE
.- y_variable
A character vector indicating the outcome variable.
y_variable
will be automatically inferred if it is missing and can be inferred from thesl_output
.- loss_metric
A loss metric, like the mean-squared-error or negative-log-loss to be used in comparing the learners. A loss metric should take two (vector) arguments: predictions, and true outcomes, and produce a single statistic summarizing the performance of each learner.
Examples
if (FALSE) { # \dontrun{
sl_model <- super_learner(
data = mtcars,
learners = list(lm = lnr_lm, rf = lnr_rf, mean = lnr_mean),
formula = mpg ~ .,
verbose = TRUE)
compare_learners(sl_model)
sl_model <- super_learner(
data = mtcars,
learners = list(lnr_logistic, lnr_rf_binary, mean = lnr_mean),
formula = am ~ mpg,
outcome_type = 'binary',
verbose = TRUE)
compare_learners(sl_model)
} # }