
Package index
-
add_screener() - Add a Screener to a Learner
-
binary_learners - Binary Learners in nadir
-
check_simple_lhs() - Validate that a formula has a simple left‐hand side check_simple_lhs( ~ x1 + x2) # errors because no lhs
-
compare_learners() - Compare Learners
-
cv_character_and_factors_schema() - Cross Validation Training/Validation Splits with Characters/Factor Columns
-
cv_origami_schema() - Cross-Validation with Origami
-
cv_random_schema() - Assign Data to One of n_folds Randomly and Produce Training/Validation Data Lists
-
cv_super_learner() - Cross-Validating a `super_learner`
-
density_learners - Conditional Density Estimation in the nadir Package
-
determine_super_learner_weights_nnls() - Determine SuperLearner Weights with Nonnegative Least Squares
-
determine_weights_for_binary_outcomes() - Determine Weights Appropriately for Super Learner given Binary Outcomes
-
determine_weights_using_neg_log_loss() - Determine Weights for Density Estimators for SuperLearner
-
df_to_survival_stacked() - Repeat Observations for Survival Stacking
-
list_known_learners() - List Known Learners
-
lnr_earth() - Earth Learner
-
lnr_gam() - Generalized Additive Model Learner
-
lnr_glm() - GLM Learner
-
lnr_glm_density() - Conditional Normal Density Estimation Given Mean Predictors — with GLMs
-
lnr_glmer() - Generalized Linear Mixed-Effects (
lme4::glmer) Learner
-
lnr_glmnet() - glmnet Learner
-
lnr_hal() - Highly Adaptive Lasso
-
lnr_heteroskedastic_density() - Conditional Density Estimation with Heteroskedasticity
-
lnr_homoskedastic_density() - Conditional Density Estimation with Homoskedasticity Assumption
-
lnr_lm() - Linear Model Learner
-
lnr_lm_density() - Conditional Normal Density Estimation Given Mean Predictors
-
lnr_lmer() - Random/Mixed-Effects (
lme4::lmer) Learner
-
lnr_logistic() - Standard Logistic Regression for Binary Classification
-
lnr_mean() - Mean Learner
-
lnr_multinomial_nnet() nnet::multinomMultinomial Learner
-
lnr_multinomial_vglm() VGAM::vglmMultinomial Learner
-
lnr_nnet() - Use nnet for Binary Classification
-
lnr_ranger() - ranger Learner
-
lnr_rf() - randomForest Learner
-
lnr_rf_binary() - Use Random Forest for Binary Classification
-
lnr_xgboost() - XGBoost Learner
-
nadir_supported_types - Outcome types supported by nadir
-
negative_log_loss() - Negative Log Loss
-
negative_log_loss_for_binary() - Negative Log Loss for Binary
-
screener_cor() - Correlation Threshold Based Screening
-
screener_cor_top_n() - Correlation Threshold Based Screening
-
screener_t_test() - t-test Based Screening: Thresholds on p.values and/or t statistics
-
screeners - Wrapping Learners with a Screener
-
super_learner() - Super Learner: Cross-Validation Based Ensemble Learning