Skip to contents

All functions

compare_learners()
Compare Learners
cv_character_and_factors_schema()
Cross Validation Training/Validation Splits with Characters/Factor Columns
cv_origami_schema()
Cross-Validation with Origami
cv_random_schema()
Assign Data to One of n_folds Randomly and Produce Training/Validation Data Lists
cv_super_learner()
Cross-Validating a `super_learner`
density_learners
Conditional Density Estimation in the nadir Package
determine_super_learner_weights_nnls()
Determine SuperLearner Weights with Nonnegative Least Squares
determine_weights_for_binary_outcomes()
Determine Weights Appropriately for Super Learner given Binary Outcomes
determine_weights_using_neg_log_loss()
Determine Weights for Density Estimators for SuperLearner
extract_y_variable()
Extract Y Variable from a list of Regression Formulas and Learners
learners
Learners in the nadir Package
lnr_glm_density()
Conditional Normal Density Estimation Given Mean Predictors — with GLMs
lnr_glmnet()
glmnet Learner
lnr_heteroskedastic_density()
Conditional Density Estimation with Heteroskedasticity
lnr_homoskedastic_density()
Conditional Density Estimation with Homoskedasticity Assumption
lnr_lm_density()
Conditional Normal Density Estimation Given Mean Predictors
negative_log_loss()
Negative Log Loss
parse_extra_learner_arguments()
Parse Extra Arguments
parse_formulas()
Parse Formulas for Super Learner
softmax()
Softmax
super_learner()
Super Learner: Cross-Validation Based Ensemble Learning