
Package index
-
add_screener()
- Add a Screener to a Learner
-
binary_learners
- Binary Learners in nadir
-
compare_learners()
- Compare Learners
-
cv_character_and_factors_schema()
- Cross Validation Training/Validation Splits with Characters/Factor Columns
-
cv_origami_schema()
- Cross-Validation with Origami
-
cv_random_schema()
- Assign Data to One of n_folds Randomly and Produce Training/Validation Data Lists
-
cv_super_learner()
- Cross-Validating a `super_learner`
-
density_learners
- Conditional Density Estimation in the nadir Package
-
determine_super_learner_weights_nnls()
- Determine SuperLearner Weights with Nonnegative Least Squares
-
determine_weights_for_binary_outcomes()
- Determine Weights Appropriately for Super Learner given Binary Outcomes
-
determine_weights_using_neg_log_loss()
- Determine Weights for Density Estimators for SuperLearner
-
list_known_learners()
- List Known Learners
-
lnr_earth()
- Earth Learner
-
lnr_gam()
- Generalized Additive Model Learner
-
lnr_glm()
- GLM Learner
-
lnr_glm_density()
- Conditional Normal Density Estimation Given Mean Predictors — with GLMs
-
lnr_glmer()
- Generalized Linear Mixed-Effects (
lme4::glmer
) Learner
-
lnr_glmnet()
- glmnet Learner
-
lnr_heteroskedastic_density()
- Conditional Density Estimation with Heteroskedasticity
-
lnr_homoskedastic_density()
- Conditional Density Estimation with Homoskedasticity Assumption
-
lnr_lm()
- Linear Model Learner
-
lnr_lm_density()
- Conditional Normal Density Estimation Given Mean Predictors
-
lnr_lmer()
- Random/Mixed-Effects (
lme4::lmer
) Learner
-
lnr_logistic()
- Standard Logistic Regression for Binary Classification
-
lnr_mean()
- Mean Learner
-
lnr_multinomial_nnet()
nnet::multinom
Multinomial Learner
-
lnr_multinomial_vglm()
VGAM::vglm
Multinomial Learner
-
lnr_nnet()
- Use nnet for Binary Classification
-
lnr_ranger()
- ranger Learner
-
lnr_rf()
- randomForest Learner
-
lnr_rf_binary()
- Use Random Forest for Binary Classification
-
lnr_xgboost()
- XGBoost Learner
-
nadir_supported_types
- Outcome types supported by nadir
-
negative_log_loss()
- Negative Log Loss
-
negative_log_loss_for_binary()
- Negative Log Loss for Binary
-
screener_cor()
- Correlation Threshold Based Screening
-
super_learner()
- Super Learner: Cross-Validation Based Ensemble Learning