
Package index
-
compare_learners()
- Compare Learners
-
cv_character_and_factors_schema()
- Cross Validation Training/Validation Splits with Characters/Factor Columns
-
cv_origami_schema()
- Cross-Validation with Origami
-
cv_random_schema()
- Assign Data to One of n_folds Randomly and Produce Training/Validation Data Lists
-
cv_super_learner()
- Cross-Validating a `super_learner`
-
density_learners
- Conditional Density Estimation in the nadir Package
-
determine_super_learner_weights_nnls()
- Determine SuperLearner Weights with Nonnegative Least Squares
-
determine_weights_for_binary_outcomes()
- Determine Weights Appropriately for Super Learner given Binary Outcomes
-
determine_weights_using_neg_log_loss()
- Determine Weights for Density Estimators for SuperLearner
-
extract_y_variable()
- Extract Y Variable from a list of Regression Formulas and Learners
-
lnr_glm_density()
- Conditional Normal Density Estimation Given Mean Predictors — with GLMs
-
lnr_glmnet()
- glmnet Learner
-
lnr_heteroskedastic_density()
- Conditional Density Estimation with Heteroskedasticity
-
lnr_homoskedastic_density()
- Conditional Density Estimation with Homoskedasticity Assumption
-
lnr_lm_density()
- Conditional Normal Density Estimation Given Mean Predictors
-
negative_log_loss()
- Negative Log Loss
-
parse_extra_learner_arguments()
- Parse Extra Arguments
-
parse_formulas()
- Parse Formulas for Super Learner
-
softmax()
- Softmax
-
super_learner()
- Super Learner: Cross-Validation Based Ensemble Learning